Predicting Morphological Types of Chinese Bi-Character Words by Machine Learning Approaches
نویسندگان
چکیده
This paper presented an overview of Chinese bi-character words’ morphological types, and proposed a set of features for machine learning approaches to predict these types based on composite characters’ information. First, eight morphological types were defined, and 6,500 Chinese bi-character words were annotated with these types. After pre-processing, 6,178 words were selected to construct a corpus named Reduced Set. We analyzed Reduced Set and conducted the inter-annotator agreement test. The average kappa value of 0.67 indicates a substantial agreement. Second, Bi-character words’ morphological types are considered strongly related with the composite characters’ parts of speech in this paper, so we proposed a set of features which can simply be extracted from dictionaries to indicate the characters’ “tendency” of parts of speech. Finally, we used these features and adopted three machine learning algorithms, SVM, CRF, and Naïve Bayes, to predict the morphological types. On the average, the best algorithm CRF achieved 75% of the annotators’ performance.
منابع مشابه
ACBiMA: Advanced Chinese Bi-Character Word Morphological Analyzer
While morphological information has been demonstrated to be useful for various Chinese NLP tasks, there is still a lack of complete theories, category schemes, and toolkits for Chinese morphology. This paper focuses on the morphological structures of Chinese bi-character words, where a corpus were collected based on a welldefined morphological type scheme covering both Chinese derived words and...
متن کاملHybrid Models for Chinese Unknown Word Resolution Dissertation
Word segmentation, part-of-speech (POS) tagging, and sense tagging are important steps in various Chinese natural language processing (CNLP) systems. Unknown words, i.e., words that are not in the dictionary or training data used in a CNLP system, constitute a major challenge for each of these steps. This dissertation is concerned with developing hybrid models that effectively combine statistic...
متن کاملLearning to Read Chinese: The Relative Roles of Phonological Awareness and Morphological Awareness
Phonological awareness and morphological awareness have been shown to affect Chinese children’s reading development. Previous studies conducted in Hong Kong, which required children to read two-character words only or a mixture of single-character and two-character words in a Chinese reading test, exclusively found that morphological awareness was more important than phonological awareness in C...
متن کاملWord and Document Embeddings based on Neural Network Approaches
Data representation is a fundamental task in machine learning. The representation of data affects the performance of the whole machine learning system. In a long history, the representation of data is done by feature engineering, and researchers aim at designing better features for specific tasks. Recently, the rapid development of deep learning and representation learning has brought new inspi...
متن کاملModeling Pronunciation Variation for Bi-Lingual Mandarin/Taiwanese Speech Recognition
In this paper, a bi-lingual large vocaburary speech recognition experiment based on the idea of modeling pronunciation variations is described. The two languages under study are Mandarin Chinese and Taiwanese (Min-nan). These two languages are basically mutually unintelligible, and they have many words with the same Chinese characters and the same meanings, although they are pronounced differen...
متن کامل